Tag: Erfolgsgeschichte

  • Post-Event Report – 2nd Forum for Supercomputing & Future Technologies

    Services & Applications for Industry and Public Institutions

    On October 21, 2025, the High-Performance Computing Center Stuttgart (HLRS) hosted the second Forum for Supercomputing & Future Technologies. Under the motto “Services & Applications for Industry and Public Institutions,” experts from research, industry, and the public sector came together to explore how high-performance computing (HPC) is driving digital innovation and transformation across domains.

    After a warm welcome by Dr. Andreas Wierse (SIDE / SICOS BW GmbH), the day began with industrial use cases highlighting the digital transformation of SMEs. Erwin Schnell (AeroFEM GmbH) opened with „Der Weg ist das Ziel" , illustrating how small and medium-sized enterprises can leverage simulation and HPC to navigate the path toward digital maturity. Dr. Andreas Arnegger (OSORA Medical GmbH) followed with an impressive insight into HPC-assisted therapy planning for bone fracture treatment, showing how computational power directly benefits patient care.

    In another striking example, Dr. Sebastian Mayer and Dr. Andrey Lutich (PropertyExpert GmbH) demonstrated how AI-based image recognition is revolutionizing automated invoice verification – a clear intersection between data science and high-performance computing.

    After a short coffee break, Paul von Berg (Urban Monkeys GmbH / DataMonkey) shared his experience fine-tuning a geospatial LLM on HPC systems, sparking lively discussions among attendees. Daniel Gröger (alitiq GmbH) presented an FFplus-supported project using machine learning for short-term PV power forecasting, followed by Dr. Xin Liu (SIDE / Jülich Supercomputing Centre) , who showcased dam-break simulations and German Bight operation models – tangible examples of HPC applications in the public sector.

    Before lunch, several key initiatives were introduced, including SIDE, FFplus, JAIF, HammerHAI, EDIH Südwest and EDIH-AICS. Together, they illustrated how research, funding, and industry are closely collaborating to enhance digital innovation and technological sovereignty in Germany and Europe.

    The afternoon program combined practical experience with networking. Participants could either join Speeddating with HPC, AI, and funding experts or take a data center tour to see HLRS infrastructure in action. Later, sessions included one-on-one expert consultations, a hands-on workshop „How to Use a Supercomputer: The Basics“ by Dr. Maksym Deliyergiyev , and a visualization workshop led by the HLRS Visualization Department, where participants experienced immersive data environments.

    In closing, Dr. Andreas Wierse offered a look ahead to upcoming SIDE and EuroCC activities, emphasizing the growing role of collaboration and accessibility in supercomputing. The forum once again proved that HPC is no longer an exclusive domain of research institutions but a practical tool for innovation in both industry and the public sector.

    The morning program of the second SIDE Forum can now be viewed below.

    Watch video

  • HPC for AI-based trading robots: A success story with Smart-Markets GmbH

    Technical/scientific Challenge

    In the ever-changing financial markets, adaptability and innovation are crucial for sustained success. Smart-Markets GmbH is an SME that develops and offers automated trading robots for medium to long-term stock trading and foreign exchange (forex) Day trading. Since market dynamics change over time, the performance of a trading algorithm diminishes when it is not able to adapt to market changes. Therefore, maintaining continuous effectiveness of the trading robots is one of the major challenges for Smart-Markets, currently requiring continuous back-testing and recalibration of the trading robot algorithms.

    Solution

    To address this challenge, Smart-Markets collaborated with SIDE in a Proof-of-Concept (PoC) study to explore using advanced Machine Learning techniques, specifically Reinforcement Learning, to improve the adaptability of their trading robots. As shown in Figure 1, the robot traded in the EUR/USD stock market. More than 10 years of high frequency tick data, which records every price change in trading, was used for the training and the subsequent test-trading of the agent.

    Figure 2 depicts the results for a simplified scenario, in which no trading fee was applied for the transactions. After an initial random action phase in the first years of trading, where the net worth of 100.000 USD did not significantly change, the agent started making its own trading decisions. Evidently, the predictions of the agent were sufficient to achieve a continuous profit over several years of trading, even in periods of overall negative trends.

    Diagram showing an interaction loop between two labeled boxes. The top box says
    Figure 1: AI agent with reinforcement learning to trade Euro and USD in the stock price.
    Diagram showing an interaction loop between two labeled boxes. The top box says
    Figure 2: Net worth of the trading robot over time (left) and the course of the USD/EUR training data (right).

    Benefits 

    • SIDE helped Smart-Markets leverage HPC resources for processing and analyzing large-scale, high-frequency financial data.
    • The PoC enabled the testing of AI-based trading robots, which could be adapted to changing market conditions within Smart-Markets trading strategies.
    • This PoC serves as a model for exploring broader adoption of advanced computing in the financial sector and beyond.

    Results

    With AI expertise provided by SIDE, this PoC allowed Smart-Markets to explore a new technology without first needing to acquire AI experience. The results show that an AI-based trading robot has the potential to trade profitably over multiple years by dynamically adapting to market changes in real-time. However, within the scope of this project, it was not possible to train a robot that makes a profit in realistic scenarios where a fee is required for each action. To adapt the trading robot to realistic scenarios in the future, the scope of this PoC could be significantly expanded by e.g. incorporating data from several trading prices into the training model.

  • State-of-the-art advancements in quantitative MRI using HPC

    Technical/scientific Challenge

    Quantitative MRI (qMRI) measures underlying MRI parameters, enhancing sensitivity to physiological changes and enabling reliable test-retest comparability, so that observed changes reflect true physiological differences rather than scanner variability. Translating qMRI to UHF, which produces higher-resolution imaging in shorter acquisition times, entails increased field inhomogeneities and specific absorption rate, though. Novel methods developed at INM-4 address these challenges but trigger significantly higher reconstruction complexity and prohibitively long reconstruction times.

    Solution

    To address these prohibitively long reconstruction times, INM-4, in collaboration with the Simulation and Data Lab Neuroscience, optimized its reconstruction code for HPC at JSC. By implementing efficient preprocessing, the reconstruction problem was converted into a slice-by-slice process that could be parallelized. Combined with automated slice processing via bash scripts, this reduced compute time from 320 hours to 8 hours per subject using HPC. This optimized workflow overcame previous limitations, enabling the application of a novel qMRI method that achieves faster scans, improved image quality, and precise parametric estimates. Subsequent measurement of a large cohort confirmed HPC-powered qMRI at UHF as a crucial step toward clinical feasibility.

    Diagramm zur Verbesserung von MRT-Bildern mit einem Supercomputer.
    Figure 1: In accelerated acquisitions, undersampling artifacts degrade image quality. The new qMRI method addresses UHF challenges by acquiring numerous MR images with slightly varying scanner settings. To maintain a short acquisition time, each image is highly accelerated, resulting in severe undersampling artifacts. The reconstruction algorithm corrects these artifacts through extensive computation, requiring a supercomputer. The final output is high-quality, artifact-free images, from which quantitative parameters are estimated.

    Benefits

    • HPC reduced reconstruction time from 320 to 8 hours per subject, making qMRI feasible.
    • The optimised qMRI method enabled faster scans, improved image quality, and more precise parametric estimates.
    • Collaboration with JSC enhanced computational efficiency and set the stage for AI-driven qMRI.
    Vergleichsdiagramm von Gehirn-MRT-Bildern, unterteilt in zwei Hauptabschnitte: Qualitatives MRT (links) und Quantitatives MRT (rechts). Unter „Qualitatives MRT“ gibt es eine Spalte mit drei graustufigen Gehirnabschnitten – axial (oben), sagittal (mittig) und koronal (unten) – die ein Strukturabbild mit willkürlicher Signalintensität zeigen. Eine Graustufen-Skala daneben reicht von -0,5 bis 0,5 und ist mit „Signal Intensity [a.u.]“ beschriftet. Unter dieser Spalte steht: „Structural image with arbitrary signal intensity.“ Der Bereich „Quantitatives MRT“ enthält vier Spalten, wobei jede die gleichen drei Gehirnansichten zeigt, jedoch mit unterschiedlichen Farbcodierungen und Messeinheiten: 1. Die erste Spalte zeigt farbkodierte Bilder von Blau (niedrig) bis Gelb (hoch), welche den „freien Wassergehalt in Prozent“ darstellen. Eine vertikale Skala rechts reicht von 0 bis 100 und ist mit „C_fw [%]“ beschriftet. Die Bildunterschrift lautet: „Free water content in percentage.“ 2. Die zweite Spalte zeigt Bilder in einer Farbskala von Blau/Grün (niedrig) bis Gelb (hoch) für die „Longitudinale Relaxationszeit in Millisekunden“, mit einer Skala von 0 bis 4000, beschriftet mit „T₁ [ms]“. Beschriftung: „Longitudinal relaxation time in milliseconds.“ 3. Die dritte Spalte verwendet eine Farbskala von Blau bis Gelb, um die „Effektive transversale Relaxationszeit in Millisekunden“ darzustellen, mit einer Skala von 0 bis 60, beschriftet mit „T₂* [ms]“. Die Beschriftung darunter lautet: „Effective transverse relaxation time in milliseconds.“ 4. Die vierte Spalte zeigt wieder Graustufenbilder, ähnlich wie beim qualitativen MRT, und stellt die „Magnetische Suszeptibilität in ppm“ dar. Die Skala reicht von -0,10 bis 0,10 und ist mit „χ [ppm]“ beschriftet. Darunter steht: „Magnetic susceptibility in ppm.“ Über den Bildern trennt eine waagerechte Linie die Überschriften: „Qualitatives MRT“ links und „Quantitatives MRT“ rechts. Jede Bilderspalte hat eine kurze, kursiv gedruckte Beschreibung des dargestellten Parameters und der jeweiligen physikalischen Einheit. Das Layout hebt den Kontrast zwischen einem einzelnen MRT-Scan mit willkürlicher Intensität und mehreren quantitativen MRT-Ansätzen hervor, die direkt kalibrierte, numerische Messwerte über die Eigenschaften des Gehirngewebes liefern.
    Figure 2: In vivo results showing a qualitative structural image and quantitative water content map C_W, T_1 map, T_2^* map, and magnetic susceptibility map χ acquired with the QRAGE method.

    Industrial sector

    Health care / Pharmaceuticals / Medical devices, IT/HPC systems

    Scientific partners involved

    Logo mit einem stilisierten blauen Symbol auf der linken Seite und Text auf der rechten Seite. Der Text lautet:JÜLICH ForschungszentrumDas Design wirkt modern und wissenschaftlich.

    The Institute of Neuroscience and Medicine 4 (INM-4) at Forschungszentrum Jülich develops innovative methods to advance diagnostics and improve our understanding of the brain with state-of-the-art medical imaging technology, including ultra-high-field (UHF) 7T MRI. Its interdisciplinary approach in close collaboration with JSC leverages cutting-edge computational resources to develop novel imaging methods for visualizing new biomarkers at higher resolutions in shorter acquisition times.

    Scientific impact

    Implementing qMRI at UHF required a novel imaging method to address increased field inhomogeneities and specific absorption rate. This method enabled faster scans and improved image quality but required solving a complex reconstruction problem with high computational demands. Using conventional hardware, reconstruction was prohibitively slow—8 hours per slice for 160 slices per subject—delaying evaluation of its clinical potential.

    To overcome this, the team turned to HPC and consulting services at JSC to adapt their software to harness HPC's power. Parallelizing tasks and automating processes reduced compute time from 320 to just 8 hours per subject, making it feasible to apply the novel qMRI method, which had been constrained by slow reconstruction.

    HPC thus enabled the method’s practical use, improving image quality and parametric accuracy. This brings qMRI at UHF closer to clinical application, enhancing diagnostics. Further optimization—such as AI-driven image reconstruction—could eventually make it viable in routine clinical settings without direct HPC access, benefiting patients through more precise and timely diagnostics.

    Read more

    • „(ISMRM 2023) QRAGE – Multi-Echo MPnRAGE and Model-Based Reconstruction for Quantitative MRI of Water Content, T1, T2* and Magnetic Susceptibility at 7T“. Zugegriffen: 1. Oktober 2025. [Online]. Verfügbar unter: https://archive.ismrm.org/2023/1091.html
    • M. Zimmermann u. a., „QRAGE—Simultaneous multiparametric quantitative MRI of water content, T1, T2*, and magnetic susceptibility at ultrahigh field strength“, Magnetic Resonance in Medicine, Bd. 93, Nr. 1, S. 228–244, Jan. 2025, doi: 10.1002/mrm.30272.
  • 2. SIDE Forum

    2. SIDE Forum

    Erleben Sie, wie HPC und KI Ihre Innovation beschleunigen können – beim 2. SIDE Forum am 21. Oktober 2025!
    Sie sind Teil eines KMU, Start-ups, Industrieunternehmens oder einer öffentlichen Einrichtung und möchten Ihr Innovationspotenzial mit High Performance Computing (HPC), Datenanalyse oder Künstlicher Intelligenz (KI) steigern? Dann ist das 2. SIDE Forum – Supercomputing in Deutschland genau das Richtige für Sie! Entdecken Sie, wie diese leistungsstarken Technologien Ihnen helfen können, komplexe Herausforderungen zu lösen, Prozesse zu optimieren und sich fit zu machen für die Zukunft.
    Veranstalter ist Supercomputing in Deutschland (SIDE) – das nationale Kompetenzzentrum für HPC, HPDA und verwandte Technologien. Das Forum bringt Technologieexpert:innen, Förderprogramme und praktische Unterstützungsangebote zusammen, die Ihnen den Einstieg erleichtern oder den nächsten Wachstumsschritt ermöglichen.
    Was erwartet Sie?
    Am Vormittag erhalten Sie Einblicke in:
    • Praxisnahe Anwendungsbeispiele und Erfolgsgeschichten von Unternehmen und Institutionen, die bereits HPC und KI einsetzen

    Am interaktiven Nachmittag haben Sie die Möglichkeit, direkt mit SIDE-Expert:innen in Kontakt zu treten – durch:
    • Speed-Dating: Kurze 1:1-Gespräche, um die passenden Ansprechpartner zu finden

    Ob Sie neu im Thema HPC sind oder bereits den nächsten Schritt planen – das SIDE Forum bietet Ihnen praxisnahe Orientierung, Zugang zu Fördermöglichkeiten und Expertenunterstützung – alles an einem Ort.
    👉 Nutzen Sie diese Chance, das Potenzial von HPC und KI für Ihre Organisation zu erschließen. Seien Sie dabei und erfahren Sie, wie SIDE Sie auf Ihrem Weg unterstützen kann.
    Die Anmeldung ist jetzt möglich!

    📅 21. Oktober 2025, 9:00-17:00 Uhr
    📍 HLRS Stuttgart, Nobelstraße 19, 70569 Stuttgart
    🤝 2. Forum für Supercomputing in Deutschland
    📑 Aktuelle Agenda

  • Overview of the 1st Forum for Supercomputing & Future Technologies at HLRS

    On December 2, 2024, an exciting event focusing on the diverse applications of high-performance computing (HPC) took place at the High-Performance Computing Center Stuttgart (HLRS) . Under the mottoServices & Applications for Industry and Public Institutions" the event offered comprehensive insight into current developments, practical applications, and financing options for HPC projects. The forum was held as part of the European EuroCC project, which supports national competence centers for high-performance computing (HPC), such as the German National Competence Center (NCC), throughout Europe. The forum was organized jointly by HLRS and Sicos BW on behalf of the German NCC. The other members of the NCC — the Jülich Supercomputing Centre (JSC) and Leibniz-Rechenzentrum (LRZ) — were represented as participants.

    Ein moderner Hörsaal mit weißen Wänden und Decke, ausgestattet mit Reihen von weißen Tischen und Stühlen. Der Raum ist mit Menschen gefüllt, die an den Tischen sitzen und auf eine große Projektionsleinwand vorne schauen. Ein Präsentator steht in der Nähe der Leinwand und hält eine Präsentation. Die Folie auf der Leinwand trägt den Titel "Vorstellung des NCC Germany" und enthält Text und Grafiken. Das Publikum scheint aufmerksam zu sein, einige Personen nutzen Laptops. Der Raum ist gut beleuchtet mit Deckenleuchten, und es gibt mehrere Deckenprojektoren und Lautsprecher. An der Wand rechts von der Leinwand befindet sich ein großes schwarz-weißes Porträt. Die Veranstaltung heißt "1. Forum für Supercomputing & Zukunftstechnologien" und fand am 2. Dezember im HLRS statt.

    Welcome and introduction

    Dr. Andreas Wierse opened the event with a short welcome and presented the program for the day. He then gave an informative introduction to the German National Competence Center for HPC. This presentation provided participants with an overview of the center's goals and tasks.

    Industry use cases – from water management to defossilization

    The morning was dominated by examples of practical applications of HPC from industry. In the first session, experts presented how HPC is enabling innovative solutions such as:

    • Dr. Pavel Apanasevich (hydrograv GmbH) explained the use of supercomputing to optimize water management facilities.
    • Dr. Benedetto Risio (RECOM Services GmbH) showed how HPC supports industry in defossilizing its energy systems.
    • Dr. Max Gaedtke (cloudfluid) impressed with examples of multiphysical flow simulations on high-performance GPUs.

    After a short coffee break, further use cases followed:

    • Lukas Kriete (Kimoknow) explained the use of zero-shot transformer models for scalable catalog searches based on CAD data.
    • Dr. Johanna Berndt (Grunetal) presented innovative solutions for scalable data connectivity and storage solutions.
    • Dr. Xin Liu (Jülich Supercomputing Centre) presented a proof of concept for the use of AI in stock trading.
    Ein moderner Seminarraum mit mehreren Personen, die an weißen Tischen sitzen und einer Präsentation folgen. Zwei Referenten stehen vorne: Der erste, links, trägt eine graue Jacke und Jeans, während der zweite, rechts, eine dunkelblaue Jacke und Jeans trägt und gestikuliert, während er spricht. Auf einer großen Leinwand hinter ihnen wird eine Präsentationsfolie mit einem Titel und einem Bild einer Person angezeigt, obwohl der Text nicht klar erkennbar ist. Die Teilnehmer sitzen in Reihen, einige mit geöffneten Laptops, um Notizen zu machen oder der Präsentation zu folgen. Der Raum hat große Fenster auf einer Seite, die natürliches Licht hereinlassen.

    Funding and public use cases

    After a joint lunch break, the focus shifted to funding opportunities for HPC projects. Josephine Stemmer, Dr. Andreas Wierse and Dr. Nadja Schauffler outlined specific ways to finance feasibility studies and projects, including FFplus and BEGIN HPC+.

    Use cases in the public sector were then presented. Led by Dr. Uwe Wössner, the visualization department at HLRS demonstrated how digital twins can support the energy transition and traffic planning. A particularly impressive presentation on conflict resolution in bicycle and pedestrian traffic was given by Marko Djuric (HLRS).

    Disaster control and networking

    After another break, the topic of disaster control was addressed. Dr. Ralf Schneider (HLRS) showed how computer-aided models can provide fast and effective emergency aid in crisis situations.

    Finally, participants had the opportunity to exchange ideas with experts and experience a CAVE demo led by Dr. Uwe Wössner .

    Ein Klassenzimmer oder Hörsaal, in dem eine Präsentation stattfindet. An der Vorderseite des Raumes wird auf einer großen Leinwand ein Stadtmodell mit dem Text "Stuttgart 2024" unten angezeigt. Oben links auf der Leinwand steht in deutscher Sprache "Die Haltestellen Projekt 'Chance'". Vor der Leinwand steht ein Mann mit langen Haaren, der in ein Mikrofon spricht. Neben ihm steht eine Frau mit dunklen Haaren am Rednerpult mit einem Computer. Mehrere Personen sitzen an Schreibtischen mit Laptops und anderen elektronischen Geräten und schauen zu den Präsentatoren. An der Wand befindet sich ein Whiteboard mit der Aufschrift "Hello willkommen". Der Raum wirkt modern und professionell.

    Conclusion

    The event provided an excellent overview of the diverse applications of HPC – both in industry and in the public sector. The combination of technical presentations, practical examples, and networking opportunities was rated positively by all participants. Of particular note were the questions and discussions after each session, which were characterized by lively debates and numerous ideas. One example of this is the question: “How should models for stock trading be developed when trading is increasingly being taken over by robots?”

    HLRS once again underscored the leading role of the German national competence center and the EuroCC project in the HPC landscape and showed how these players are actively contributing to the further development of technologies and their use. Participants were able to take away many valuable ideas to advance their own projects. We look forward to the next forum in 2025!

  • HPC and MRI

    Our latest scientific success story!

    First of all: Welcome to our new blog! Here we’ll report on news, events, successes and collaborations. You can now keep up to date with our activities, just as you would on social media, but with more in-depth insights.

    In this opening post, we present our first contribution to the new Supercomputing in Europe Podcast Series ! In it, you can learn more about our latest scientific success, where we use the supercomputer at the Jülich Supercomputing Centre to accelerate image reconstruction for quantitative MRI. With the help of HPC, the entire series of MRI scans could be reconstructed into an image of the brain in six hours, and with the help of AI models, it can be done even faster.

    Listen to it and stay tuned for a more detailed article about this success, as well as a video of the interview!